On Generalizing Neural Node Embedding Methods to Multi-Network Problems
نویسندگان
چکیده
Representation learning has attracted significant interest in the community and has been shown to be successful in tasks involving one graph, such as link prediction and node classification. In this paper, we conduct an empirical study of two leading deep learning based node embedding methods, node2vec and SDNE, to examine their suitability for problems that involvemultiple graphs. Although they have been shown to preserve properties necessary for the success of canonical tasks on a single graph, we find that different runs of the same algorithm even on the same graph yield different embeddings. For node embedding methods to apply to multi-graph problems, we note that this finding motivates additional work in learning how to embed different graphs similarly.
منابع مشابه
Link Prediction using Network Embedding based on Global Similarity
Background: The link prediction issue is one of the most widely used problems in complex network analysis. Link prediction requires knowing the background of previous link connections and combining them with available information. The link prediction local approaches with node structure objectives are fast in case of speed but are not accurate enough. On the other hand, the global link predicti...
متن کاملDetecting Overlapping Communities in Social Networks using Deep Learning
In network analysis, a community is typically considered of as a group of nodes with a great density of edges among themselves and a low density of edges relative to other network parts. Detecting a community structure is important in any network analysis task, especially for revealing patterns between specified nodes. There is a variety of approaches presented in the literature for overlapping...
متن کاملEstimating river suspended sediment yield using MLP neural network in arid and semi-arid basins Case study: Bar River, Neyshaboor, Iran
Abstract Erosion and sedimentation are the most complicated problems in hydrodynamic which are very important in water-related projects of arid and semi-arid basins. For this reason, the presence of suitable methods for good estimation of suspended sediment load of rivers is very valuable. Solving hydrodynamic equations related to these phenomenons and access to a mathematical-conceptual mode...
متن کاملA conjugate gradient based method for Decision Neural Network training
Decision Neural Network is a new approach for solving multi-objective decision-making problems based on artificial neural networks. Using inaccurate evaluation data, network training has improved and the number of educational data sets has decreased. The available training method is based on the gradient decent method (BP). One of its limitations is related to its convergence speed. Therefore,...
متن کاملAn artificial Neural Network approach to monitor and diagnose multi-attribute quality control processes
One of the existing problems of multi-attribute process monitoring is the occurrence of high number of false alarms (Type I error). Another problem is an increase in the probability of not detecting defects when the process is monitored by a set of independent uni-attribute control charts. In this paper, we address both of these problems and consider monitoring correlated multi-attributes proce...
متن کامل